Email updates

Keep up to date with the latest news and content from JN and BioMed Central.

Open Access Highly Accessed Review

Investigating bioconjugation by atomic force microscopy

Ingrid Tessmer1*, Parminder Kaur2, Jiangguo Lin2 and Hong Wang2

Author Affiliations

1 Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany

2 Physics Department, North Carolina State University, Raleigh, NC 27695-8202, USA

For all author emails, please log on.

Journal of Nanobiotechnology 2013, 11:25  doi:10.1186/1477-3155-11-25

Published: 15 July 2013

Abstract

Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.

Keywords:
Atomic force microscopy (AFM); Nanotechnology; Bioconjugation; Nanoelectronics; Nanolithography; Nanomedicine; Biosensors; Nanorobot; DNA origami; Single molecule